High Voltage Amplifier/ Piezo Driver and Modulator

The A-304 piezo Driver/Piezo Amplifier is a high Voltage, high speed Piezo Driver / Linear Amplifier combined with a wide band AM/FM modulator.
It was especially designed as a Linear Amplifier / Driver for PIEZO Electric Actuators (also known as Piezo Amplifier"), stacks, piezo sheets, bimorph elements and other devices. It may be also used as a general purpose High Voltage amplifier for Medical applications (for example, as electode driver for Neurology).
The Piezo Driver / Piezo Amplifier is based on a high voltage, high frequency and high current MOSFET amplifier which is capable of driving up to $\pm 400 \mathrm{~V}$ (800 V ptp) at $\pm 100 \mathrm{~mA}$ at frequencies MOSFET amplifer which is capable of diriving up ro $\pm 400 \mathrm{~V}$ (800 V pip) af $\pm 100 \mathrm{~mA}$ at frequencies from DC to 250 kHz . By connecting 2 amplifiers in parallel or in series, the output voltage and current may be doubled to 1600 Vptp @ 100 mA or $800 \mathrm{Vptp} @ 200 \mathrm{~mA}$. The amplifier section is v stable and has a low noise output and a very low electrical noise - Compare Our Specifications!
The built-in modulator (AM or FM) enables the user to modulate the carrier frequency (adjusted on The built-in moduiaior (AM or FV) enabies the user to modulate ine carrier frequency (adjusied on
the front panel) by any input signal at the range of $\pm 10 \mathrm{~V}$. This modulator can be bypassed by a the front panel) by any input signal at the range of $\pm 10 \mathrm{~V}$. This modulator can be bypassed by a
switch. This High Slew Rate Amplifier / Driver can be used for Various applications requesting high switch. This High Slew Rate Amplifier / Driver can be used for Various applications requesting high Slew Rate, High Voltage and fast response as: Plasma Driver and Plasma Actuation, driver for piezo manipulator, Optical Switching devices, closed loop feedback systems, vibration control, structural damping analysis, Flow actuation and control etc.

Features:

ery Low Electrical Noise.

Low Distortion
No Audible Noise-you may hear your experiment High Slew rate-up to 300 Volt/microsecond. Input protection-High Voltage, On/Off. Output protection - Short-circuit (for a short time), Powe Bs,Impedance.
Amplitude(AM) or Frequency(FM) modulation

- High Frequency - up to 100 kHz .

Low distortion
Sync output provides a square wave in the same phase and frequency of the modulator output (for synchronization and frequency measurement).

* The unit is self cooled - no fan or noisy parts.
Adjustable frequency, Gain, Offset
The modulator may be turned off if not in use
The modulator may be turned off if
(only amplifier section would work).
Amplitude and Frequency modulation

Applications:
2 amplifiers can be connected in series or in parallel in order to double the Output Voltage or Output Current.
Series connection ($+1-800 \mathrm{~V}$ into a floating load $=1600 \mathrm{~V}$ ptp)

Technical Specifications:

Modulator Section:	
Center Frequency	$1-100 \mathrm{kHz}$ adjustable
Modulation	Amplitude (AM) or Frequency (FM)
Waveform	Sine Wave
Distortion	0.5 \% maximum
Modulation Input F.S.	$\pm 10 \mathrm{~V}$
Modulation Input Impendance	$10 \mathrm{~K} \Omega$
Sync Output	$1 \mathrm{Vptp}, \mathrm{AC}$ coupled, $1 \mathrm{~K} \Omega$ impendance
Amplitude Adjustment	0.5 V ptp to 20 V ptp
Offset Adjustment	$\pm 5 \mathrm{~V}$ or 0 V fixed
Modulator output Impedance	100Ω
The modulator may be turned off when not in use!	
AC Input:	
Line Input Voltage	$\begin{aligned} & 110 / 120 \mathrm{~V}, 60 \mathrm{~Hz} \\ & \text { or } 220 / 230 \mathrm{~V}, 50 \mathrm{~Hz} \end{aligned}$
Line Input Current	1.3 A peak
Amplifier Section:	
Max. Input Voltage	$\pm 12 \mathrm{~V}$
Max. Output Voltage	$\pm 400 \mathrm{~V}$ (800 V ptp)
Max. Current	$\pm 100 \mathrm{~mA}$
Bandwidth	Into $1 \mathrm{~K} \Omega$ resistive load
	DC to 300 kHz ((-3 dB)
Output Power	40 Watt maximum
DC Gain	40 (up to 100 optional)
Coupling	Input \& Output: Direct DC Coupling
DC Offset	$\begin{aligned} & \text { Adjustable to } \pm 320 \text { Volts } \\ & + \text { DC On/Off } \end{aligned}$
Input Impendance	$10 \mathrm{~K} \Omega$
Slew Rate	$300 \mathrm{~V} / \mu \mathrm{Sec}$
Output Impendance	100Ω
Output Noise, input shorted, 300 KHz . bandwidth	$10 \mathrm{mV} \mathrm{PTP} \mathrm{max}. \mathrm{(2} \mathrm{mV} \mathrm{RMS} \mathrm{max)}$.
Variable Gain Option	0-40X or 0-100X available. Consult factory for that option.

Calculating the estimated current needed to drive your load
order to purchase the right amplifier to drive your load, you must calculate the peak curren needed for capacitive load:
ipeak(A) $=2 \pi \mathrm{FC}$ Vpeak (for a Sine Wave)
peak(A) $=4 \mathrm{FC}$ Vpeak (for a triangular wave)
peak(A) $=\mathrm{C}$ dV / dt (for a square wave or sharp rise time)
$\pi=3.1415927$
$\mathrm{C}=$ Capacitance in Farads
peak=Maximum Voriage you need to drive your Load
Resistive Load $1=$ Vpeak/R where R is the resistance of your load in Ohm
The current, Voltage and Frequency must be less or equal to the amplifier's specification his amplifier is NOT SUITABLE for driving pure inductive loads
you must connect your load with thick wires to minimize inductance (like speaker wires). Coaxial cable is not recommended for cables over $2 \mathrm{~m}(6.5 \mathrm{Ft}$.) because the capacitance of the cable ($15-50 \mathrm{pF} / \mathrm{Ft}$) will load you amplifier at high frequencies.
xample
he active impedance of a capacitive load is given by the equation:
$\mathrm{z}=1 /\left(2 \star \mathrm{Pi} \mathrm{F}^{*} * \mathrm{C}\right)$ where $\mathrm{Pi}=3.1415, \mathrm{C}$ in Farads, F in Hz . The user must check that under the peak operation
Voltage, at maximum frequency, the current will not exceed $200 \mathrm{~mA}(0.2 \mathrm{~A})$
xample:
perating Voltage is $+/-150 \mathrm{~V}$, Maximum Frequency $=10 \mathrm{KHz}$. Load is 10 NF
$50[\mathrm{~V} / 1592[\mathrm{Ohm}]=94[\mathrm{~mA}]===>$ The amplifier will drive that load at an amplitude of $150 \mathrm{~V}(300 \mathrm{~V}$ ptp).
Please note that both amplifiers must be floating (i.e. be careful not to ground
hem via an oscilloscope etc.) It is also possible to double or triple the output
voltage by using a special transformer.
Using a transformer is possible only at high frequency (over 10 KHz .) and it requires
more components to be added for balancing and proper termination of the load.
parallel connection is done by adding resistors at the input and at the output
lease consult the factory for parallel connection
Output cannot be shorted or overloaded for more than 10 mSec ., Every 60 sec .
requency response curve for various loads:

Fast shipping!!!
All amplifiers are available from stock. We ship within 1 working day after your credit card was approved. Shipping is by UPS. It takes up to 3 working days to ship by UPS to any country.

We accept VISA, MaterCard, American Express.
We accept VISA, MaterCard, American Express.
Your credit card is charged only after we ship the order.

